Практическое занятие №3

Решение алгебраических и трансцендентных уравнений методом хорд и касательных.

Цель: Получение практических навыков решения нелинейных уравнений методом половинного деления.

Норма времени: 2 часа

Оборудование: компьютеры, программа Visual Studio.

Порядок выполнения работы Теоретические сведения

Метод хорд (секущих).

Этот метод применяется при решении уравнений вида f(x)=0, если корень уравнения отделён, т.е. $x \in [a;b]$ и выполняются условия:

- 1) $f(a) \cdot f(b) < 0$ (функция f(x) принимает значения разных знаков на концах отрезка [a;b]);
- 2) производная f'(x) сохраняет знак на отрезке [a;b] (функция f(x) либо возрастает, либо убывает на отрезке [a;b]).

Первое приближение корня находится по формуле: $x_1 = a - \frac{(b-a) \cdot f(a)}{f(b) - f(a)}$.

Для следующего приближения из отрезков $[a; x_1]$ и $[x_1; b]$ выбирается тот, на концах которого функция f(x) имеет значения разных знаков.

Тогда второе приближение вычисляется по формуле:

$$x_1 = a - \frac{(x_1 - a) \cdot f(a)}{f(x_1) - f(a)}$$
, если $\overline{x} \in [a; x_1]$ или $x_2 = x_1 - \frac{(b - x_1) \cdot f(x_1)}{f(b) - f(x_1)}$, если $\overline{x} \in [x_1; b]$.

Вычисления продолжаются до тех пор, пока не перестанут изменяться те десятичные знаки, которые нужно оставить в ответе.

6. Метод касательных (Ньютона).

Этот метод применяется, если уравнение f(x)=0 имеет корень $\overline{x} \in [a;b]$, и выполняются условия:

- 1) $f(a) \cdot f(b) < 0$ (функция принимает значения разных знаков на концах отрезка [a;b]);
- 2) производные f'(x) и f''(x) сохраняют знак на отрезке [a;b] (т.е. функция f(x) либо возрастает, либо убывает на отрезке [a;b], сохраняя при этом направление выпуклости).

На отрезке [a;b] выбирается такое число x_0 , при котором $f(x_0)$ имеет тот же знак, что и $f''(x_0)$, т. е. выполняется условие $f(x_0) \cdot f''(x_0) > 0$. Таким образом, выбирается точка с абсциссой x_0 , в которой касательная к кривой y = f(x) на отрезке [a;b] пересекает ось Ox. За точку x_0 сначала удобно выбирать один из концов отрезка.

Первое приближение корня определяется по формуле: $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$.

Второе приближение корня определяется по формуле: $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$.

Вычисления ведутся до совпадения десятичных знаков, необходимы в ответе, или при заданной точности ε - до выполнения неравенства $|x_n - x_{n-1}| < \varepsilon$.

Достоинства метода: простота, быстрота сходимости.

Недостатки метода: вычисление производной и трудность выбора начального положения.

7. Комбинированный метод хорд и касательных.

Если выполняются условия:

- 1) $f(a) \cdot f(b) < 0$,
- (a;b], (a;b), (a;b),

то приближения корня $\overline{x} \in [a; b]$ уравнения f(x) = 0 по методу хорд и по методу касательных подходят к значению этого корня с противоположных сторон. Поэтому для быстроты нахождения корня удобно применять оба метода одновременно. Т.к. один метод даёт значение корня с недостатком, а другой – с избытком, то достаточно легко получить заданную степень точности корня.

Схема решения уравнения методом хорд и касательных

- 1. Вычислить значения функции f(a) и f(b).
- 2. Проверить выполнение условия $f(a) \cdot f(b) < 0$. Если условие не выполняется, то неправильно выбран отрезок [a; b].
 - 3. Найти производные f'(x) и f''(x).
- 4. Проверить постоянство знака производных на отрезке [a; b]. Если нет постоянства знака, то неверно выбран отрезок [a; b].
- 5. Для метода касательных выбирается за x_0 тот из концов отрезка [a;b], в котором выполняется условие $f(x_0) \cdot f''(x_0) > 0$, т.е. $f(x_0)$ и $f''(x_0)$ одного знака.
 - 6. Приближения корней находятся:
 - а) по методу касательных: $x_{11} = x_0 \frac{f(x_0)}{f'(x_0)}$, б) по методу хорд: $x_{12} = a \frac{(b-a)\cdot f(a)}{f(b)-f(a)}$.

 - 7. Вычисляется первое приближение корня: $\xi_1 = \frac{x_{11} + x_{12}}{2}$.
- 8. Проверяется выполнение условия: $|\xi_1-x_{11}|<\varepsilon$, где ε заданная точность.

Если условие не выполняется, то нужно продолжить применение метода по схеме 1-8.

В этом случае отрезок изоляции корня сужается и имеет вид $[x_{11}; x_{12}]$.

Приближённые значения корня находятся по формулам:
$$x_{21} = x_{11} - \frac{f(x_{11})}{f'(x_{11})} \text{ и } x_{22} = x_{11} - \frac{(x_{12} - x_{11}) \cdot f(x_{11})}{f(x_{12}) - f(x_{11})}.$$

Вычисления продолжаются до тех пор, пока не будет найдено такое значение ξ , при котором x_{n1} и x_{n2} совпадут с точностью ε .

Пример. Решить уравнение $x^3 + 8x + 10 = 0$ методом хорд и касательных с точностью 0,001, если известно, что корень уравнения $\bar{x} \in [-2; -1]$.

Решение.

- 1.Вычислим значения функции $f(x) = x^3 + 8x + 10$ на концах отрезка: $f(a) = f(-2) = (-2)^3 + 8(-2) + 10 = -14 < 0, \quad f(b) = f(-1) = (-1)^3 + 10 = -14 < 0$ 8(-1) + 10 = 1 > 0.
- 2. Проверим выполнение условия: $f(a) \cdot f(b) = -14 * 1 < 0$ условие выполняется.
- 3. Найдём производные: $f'(x) = (x^3 + 8x + 10)' = 3x^2 + 8$ и f''(x) = $(3x^2 + 8)' = 6x$.
- 4. На отрезке [-2;-1] производные f'(x) > 0 и f''(x) < 0, т.е. сохраняют знак, следовательно, условие выполняется.
- касательных. Т.к. f''(x) <Выберем значение x_0 для метода 0 и f(-2) < 0, то $x_0 = -2$.
 - 6. Найдём приближения корня:
- а) по методу касательных: $x_{11} = -2 \frac{f(-2)}{f'(-2)} = -2,0000 \frac{-14,0000}{3(-2,0000)^2 + 8} =$ -1.3000
- хорд: $x_{12} = -2 - \frac{(-1 - (-2)) \cdot f(-2)}{f(-1) - f(-2)} = -2,0000 - \frac{1,0000 * (-14,0000)}{1,0000 - (-14,0000)} \approx -1,0667$. 7. Найдём первое приближение корня: $\xi_1 = \frac{-1,3000 + (-1,0667)}{2} \approx -1,1834$.
- 8. Проверим выполнение условия: $|\xi_1 x_{11}| = |-1,1834 (-1,3000)| =$ 0,1166 > 0,001 - условие не выполняется, значит нужно продолжить вычисления.
 - 9. Отрезок изоляции корня имеет вид: $\bar{x} \in [-1,3000;-1,0667]$.
- 10. Продолжим уточнение корня по схеме. Для этого найдём значения функции на концах суженного отрезка:

$$f(-1,3000) = -2,1970 - 10,4000 + 10 = -2,5970,$$

 $f(-1,0667) = -1,2137 - 8,5336 + 10 = 0,2527.$

- 11. Проверим условие: $f(-1,3000) \cdot f(-1,0667) < 0$ выполняется, значит можно продолжить применение метода.
- 12. Так как f''(x) < 0 и f(-1,3000 < 0 на отрезке [-1,3000; -1,0667], то для метода касательных: $x_{11} = -1,3000$.
 - 13. Вычислим значение производной: $f'(x_{11}) = f(-1,3000) = 13,0700$
 - 14. Найдём новые значения концов отрезка изоляции:

$$x_{21} = x_{11} - \frac{f(x_{11})}{f'(x_{11})} = -1,3000 - \frac{-2,5970}{13,0700} \approx -1,1013$$

$$x_{22} = x_{11} - \frac{(x_{12} - x_{11}) \cdot f(x_{11})}{f(x_{12}) - f(x_{11})} = -1,3000 - \frac{(-1,0667 + 1,3000) \cdot (-2,5970)}{0,2527 + 2,5970} \approx -1,0874$$

15. Найдём второе приближение корня: $\xi_2 = \frac{x_{21} + x_{22}}{2} = \frac{-1,1013 - 1,0874}{2} \approx -1,0944$.

- 16. Проверим выполнение условия: $|\xi_2 x_{21}| = |-1,0944 + 1,1013| = 0,0069 > 0,001$ неравенство неверное, значит необходимо продолжить вычисления.
 - 17. Отрезок изоляции корня имеет вид: [-1,1013;-1,0874].
 - 18. Вычислим значения функции: f(-1,1013) = -0,1461, f(-1,0874) = 0,0150
 - 19. Условие $f(-1,1013) \cdot f(-1,0874) < 0$ выполняется.
- 20. Так как f''(x) < 0 и f(-1,1013) < 0 на [-1,1013;-1,0874], то для метода касательных $x_{21} = -1,1013$.
 - 21. Вычислим производную: $f'(x_{21}) = f'(-1,1013) = 11,6386$

$$x_{31} = x_{21} - \frac{f(x_{21})}{f'(x_{21})} = -1,1013 - \frac{-0,1461}{11,6386} \approx -1,0887$$
 22. Вычислим:
$$x_{32} = x_{21} - \frac{(x_{22} - x_{21}) \cdot f(x_{21})}{f(x_{22}) - f(x_{21})} = -1,1013 - \frac{(-1,0874 + 1,1013) \cdot (-0,1461)}{0,0150 + 0,1461} \approx -1,0887$$

23. Найдём третье приближение корня: $\xi_3 = \frac{x_{31} + x_{32}}{2} = \frac{-1,0887 - 1,0887}{2} = -1,0887$

- 24.Проверим выполнение неравенства: $|\xi_3 x_{31}| = |-1,0887 + 1,0887| = 0,0000 < 0,001$ условие выполняется, значит, цель достигнута.
- 25. Следовательно, $\bar{x} = -1,0887$ или $\bar{x} \approx -1,088$ приближённое значение корня с точностью до 0,001.

Ответ : $\bar{x} \approx -1.088$

Задания для решения:

Вариант	Вид алгебраического	Корень, который
	уравнения	необходимо вычислить
1.	$x^3 + 2x - 7 = 0$	единственный
2.	$x^3 - 12x + 7 = 0$	единственный
3.	$x^3 - 2x - 5 = 0$	единственный
4.	$x^3 + 3x + 5 = 0$	единственный
5.	$x^3 = 8x + 4 = 0$	единственный
6.	$x^3 + x - 3.5 = 0$	единственный
7.	$x^3 + 3x - 7 = 0$	единственный
8.	$x^3 + 7x - 3 = 0$	единственный
9.	$x^3 - 4x - 2 = 0$	единственный
10.	$x^3 + 9x + 1 = 0$	единственный
11.	$x^3 - 6x - 2.5 = 0$	единственный
12.	$x^3 + 5x - 8 = 0$	единственный
13.	$x^3 - 8x - 3 = 0$	больший отрицательный
14.	$x^3 + 10x - 7 = 0$	единственный
15.	$x^3 - x + 8 = 0$	единственный

16.	$x^3 + 4x + 6 = 0$	единственный
17.	$x^3 - 9x - 1 = 0$	единственный
18.	$x^3 + 6x + 3 = 0$	единственный
19.	$x^3 - 15x + 6 = 0$	единственный
20.	$x^3 - 3x + 7 = 0$	единственный
21.	$x^3 + 13x + 2 = 0$	единственный
22.	$x^3 - 10x + 1 = 0$	меньший положительный
23.	$x^3 + 15x + 1 = 0$	единственный
24.	$x^3 - 3x + 4 = 0$	единственный
25.	$x^3 + 11x - 13 = 0$	единственный

- **Контрольные вопросы:** 1. Какие знаете приближенные методы решения алгебраических уравнений?
- 2. В чем суть решения уравнений комбинированным методом хорд и касательных?