Практическое занятие №9

Тема: «Проверка булевой функции на принадлежность к классам T0, T1, S, L, M. Полнота множеств».

Цель: Сформировать умение проводить исследование системы функций на полноту.

Оборудование и материалы: тетрадь, ручка.

Время выполнения: 2 часа.

Порядок проведения работы

Краткая теоретическая часть

Рассмотрим классы булевых функций, которые играют большую роль в вопросах

функциональной полноты.

Класс функций	Характеристика функций					
Класс	Функция $f^*(x_1,x_2,x_3,,x_n)$ называется двойственной к функц					
самодвойственных функций S	$f(x_1,x_2,x_3,,x_n)$, если $f^*(x_1,x_2,x_3,,x_n) = \overline{f(x_1,x_2,x_3,,x_n)}$. Функция $f(x_1,x_2,x_3,,x_n)$ называется <i>самодвойственной</i> , если $f(x_1,x_2,x_3,,x_n) = f^*(x_1,x_2,x_3,,x_n)$, то есть $f(x_1,x_2,x_3,,x_n) = f^*(x_1,x_2,x_3,,x_n)$					
	$f(x_1, x_2, x_3,, x_n)$. Из определения следует, что если функция самодвойственная, то она принимает противоположные значения на противоположных наборах переменных. Все функции, являющиеся самодвойственными, образуют					
	класс самодвойственных функций S.					
Класс линейных функций L	Функция $f(x_1,x_2,x_3,,x_n)$ называется линейной, если она представима в виде полинома Жегалкина степени не выше первой, т.е. $f(x_1,x_2,x_3,,x_n)=\alpha_0\oplus\alpha_1x_1\oplus\alpha_2x_2\oplus\oplus\alpha_nx_n$, где					
	$\alpha_0, \alpha_1, \alpha_2,, \alpha_n \in \{0,1\}$. Все функции, являющиеся линейными, образуют класс линейных функций L.					
Класс монотонных функций М	Функция $f(x_1, x_2, x_3,, x_n)$ называется монотонной, если для любых наборов переменных α и β , таких что $\alpha \leq \beta$ выполняется неравенство $f(\alpha) \leq f(\beta)$. Все функции, являющиеся монотонными, образуют класс монотонных функций M . Исходя из определения монотонной функции, следует, что если с увеличением набора переменных значение функции не уменьшается, то функция является монотонной.					
Классы функций, сохраняющих константы 0 и $1-T_0$ и T_1	Функция $f(x_1,x_2,x_3,,x_n)$ сохраняет константу 0, если $f(0,0,0,,0)=0$. Все функции, сохраняющие константу 0, образуют класс T_0 . Функция $f(x_1,x_2,x_3,,x_n)$ сохраняет константу 1, если $f(1,1,1,,1)=1$. Все функции, сохраняющие константу 1, образуют класс T_1 .					

Теорема Э.Поста (критерий полноты системы булевых функций). Система булевых функций $\{f_1, f_2, f_3, ..., f_n\}$ является полной тогда и только тогда, когда она не содержится целиком ни в одном из классов T_0, T_1, L, M, S .

Задания практической работы:

Проверить принадлежность следующих булевых функций классам S,L,M,T₀,T₁

- 1. $f(x,y,z) = xyz \lor xy$
- 2. $f(x,y,z)=(x \lor yz) \oplus xyz$
- 3. $f(x,y,z)=(x \lor yz) \oplus xyz$
- 4. $f(x,y,z)=(xyz\vee x\overline{yz})\oplus x\cdot (y\oplus z)$
- 5. $f(x,y,z) = xyz \oplus xyz \oplus x(y \lor z)$
- 6. $f(x,y,z) = (xyz \oplus xyz) \lor (xyz \oplus xyz)$

Исследовать на полноту систему функций:

- a) $\{xy; x \lor y; x \oplus y; xy \lor yz \lor xz\}$
- б) $\{xy; x \lor y; x \oplus y \oplus z \oplus 1\}$
- B) $\{1; X; X \cdot (y \sim z) \oplus x(y \oplus z); x \sim y\}$
- Γ) {0; x; $x \cdot (y \oplus z) \oplus yz$ }
- д) $\{xy(x \oplus y); xy \oplus x \oplus y; 1; xy \oplus yz \oplus xz\}$
- e) $\{xy(x \oplus z); 1\}$
- $(x \rightarrow y; x \oplus y)$

Пояснения к работе

Решение каждой задачи необходимо аккуратно оформлять в рабочей тетради, сопровождая подробными пояснениями, сокращать решение нельзя. При выполнении заданий можно пользоваться сборником формул.

При исследовании системы булевых функций $\{f_1, f_2, ..., f_n\}$ на полноту целесообразно придерживаться *алгоритма*:

- 1. Проверить принадлежность каждой функции $\{f_1, f_2, ..., f_n\}$ к каждому из классов $S, L, M, T_0, T_1;$
- 2. Заполнить критериальную таблицу, в которой знаком «+» отразить принадлежность функции определенному классу и «-» не принадлежность:

	S	L	M	T_0	T_1
f_1					
f_2					
f_n					

3. Сделать вывод: если в таблице хотя бы один столбец будет содержать все «+» (т.е. все функции принадлежат одному и тому же классу), то система функций не является полной, в противном случае – система функций является полной.

Контрольные вопросы:

- 1. Чем характеризуется класс самодвойственных функций?
- 2. Чем характеризуется класс линейных функций?
- 3. Чем характеризуется класс монотонных функций?
- 4. Чем характеризуется класс функций, сохраняющих 0?
- 5. Чем характеризуется класс функций, сохраняющих 1?
- 6. Сформулируйте критерий полноты системы булевых функций.