Практическое занятие №6

Тема: «Построение таблиц истинности».

Цель: обобщить основные понятия логики высказываний, создать условия для формирования знаний по построению таблиц истинности, закрепить алгоритм составления таблиц истинности на практике.

Оборудование и материалы: тетрадь, ручка.

Время выполнения: 2 часа.

Порядок проведения работы

Каждой логической операции соответствует таблица истинности:

Таблица 1 – Таблица истинности логических операций

A	В	¬A	A∀B	АлВ	A→B	A↔B
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Построить таблицы истинности для данных ниже сложных высказываний. По таблице истинности определить тип формулы логики высказываний.

- 1. $F = (A \lor B) \land (\neg A \lor \neg B)$
- 2. $F = X \vee Y \wedge \neg Z$
- 3. $F=X_{\Lambda}Y_{\nabla}(X_{\nabla}Y)_{\nabla}X$
- 4. $F = A \wedge (B \rightarrow C)$
- 5. $F=(B \land \neg B) \leftrightarrow (A \lor D)$

Таблицы истинности указанных выше высказываний представлены в таблицах 2-6.

Таблица 2 — Таблица истинности высказывания $F = (A \lor B) \land (\neg A \lor \neg B)$

A	В	¬ A	¬ B	$\neg Av \neg B$	AvB	F
0	0	1	1	1	0	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	1	0	0	0	1	0

Таблица 3 — Таблица истинности высказывания $F = X \vee Y \wedge \neg Z$

X	Y	Z	$\neg Z$	Υ ^¬ Z	F
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1

Таблица 4 – Таблица истинности высказывания F=X_{\(\Lambda\)}Yv¬(XvY)vX

X	Y	XvY	¬(XvY)	ΧΛΥ	$X \wedge Y \vee \neg (X \vee Y)$	F
0	0	0	1	0	1	1
0	1	1	0	0	0	0
1	0	1	0	0	0	1
1	1	1	0	1	1	1

Таблица 5 — Таблица истинности высказывания $F = A \wedge (B \rightarrow C)$

т иолици с	т иолици по	orinino erin bbie	Rusbibuilli i	$III(D \cdot C)$
A	В	С	$B \rightarrow C$	F
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0

1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Таблица 6 – Таблица истинности высказывания $F=(B \land \neg B) \leftrightarrow (A \lor D)$

A	В	D	$\neg B$	Вл¬В	AvD	F
0	0	0	1	0	0	1
0	0	1	1	0	1	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	1	0	1	0
1	0	1	1	0	1	0
1	1	0	0	0	1	0
1	1	1	0	0	1	0

Задание 1. Построить таблицы истинности для логических функций

1	$F = A \vee \overline{B} \vee \left(\overline{A} \vee C\right)$	16	$F = A \leftrightarrow C \lor B \to A$
2	$F = A \to \overline{B} \lor C$	17	$F = A \leftrightarrow \overline{C} \lor B \to \overline{A}$
3	$F = B \vee \left(\overline{A} \leftrightarrow C\right)$	18	$F = (A \leftrightarrow C) \lor (B \to A)$
4	$F = \overline{B} \vee (A \leftrightarrow C)$	19	$F = A \leftrightarrow C \lor \left(B \to \overline{A}\right)$
5	$F = A \wedge B \to \overline{B} \wedge C$	20	$F = A \leftrightarrow (C \lor B \to A)$
6	$F = A \land B \longleftrightarrow B \lor C$	21	$F = (\overline{A} \leftrightarrow C) \lor B \to A$
7	$F = \left(A \vee \overline{B}\right) \vee \left(\overline{A} \to C\right)$	22	$F = \overline{A} \leftrightarrow \left(C \vee \overline{B} \to A\right)$
8	$F = \left(A \to \overline{B}\right) \lor C$	23	$F = A \wedge \left(B \to \overline{C}\right) \wedge C$
9	$F = B \lor C \longleftrightarrow A \lor C$	24	$F = A \land \left(B \leftrightarrow \overline{A}\right) \lor C$
10	$F = \overline{B} \vee (A \wedge C \to B)$	25	$F = \left(C \vee \overline{B}\right) \vee \left(\overline{A} \vee C\right)$
11	$F = A \vee B \to \overline{B} \vee C$	26	$F = A \to \overline{B} \lor (C \to B)$
12	$F = A \land B \leftrightarrow B \lor C$	27	$F = \left(A \wedge B \to \overline{B}\right) \wedge \left(C \vee \overline{A}\right)$
13	$F = A \to \overline{B} \vee \left(\overline{A} \vee C\right)$	28	$F = \overline{B} \vee (A \leftrightarrow C) \wedge C$
14	$F = \overline{A} \wedge B \to \overline{B} \vee C$	29	$F = A \wedge B \to B \wedge C$
15	$F = B \vee (\overline{A} \leftrightarrow C) \wedge A$	30	$F = A \land B \longleftrightarrow B \lor C$

Контрольные вопросы:

- 1. Что такое логика?
- 2. Понятие и обозначение инверсии.
- 3. Таблицы истинности инверсии
- 4. Понятие и обозначение конъюнкции.
- 5. Таблицы истинности конъюнкции.
- 6. Понятие и обозначение дизъюнкции.
- 7. Таблицы истинности дизъюнкции.
- 8. Понятие и обозначение импликации.
- 9. Таблицы истинности импликации.
- 10. Понятие и обозначение эквивалентности
- 11. Таблицы истинности эквивалентности.
- 12. Порядок действий в сложных логических выражений.
- 13. Способ изменения порядка действий в логических выражениях.