Практическое занятие №4

Тема: «Формулы логики. Упрощение формул логики с помощью равносильных преобразований».

Цель: закрепить знание законы алгебры логики, отработать навыки преобразования формулы с помощью равносильных преобразований, сформировать умение решать булевы уравнения.

Оборудование и материалы: тетрадь, ручка.

Время выполнения: 2 часа.

Порядок проведения работы

Законы алгебры логики

Дизъюнкция	Законы	Конъюнкция	
$a \lor b = b \lor a$	Переместительный закон	ab = ba	
$A \vee (b \vee c) = (a \vee b) \vee c$	Сочетательный закон	a(bc) = (ab)c	
$a(b \vee c) = ab \vee ac$	Распределительный закон	$a \lor (bc) = (a \lor b)(a \lor c)$	
$a \lor a = a$	Правила идемпотентности	$a \cdot a = a$	
$\overline{a \lor b} = \overline{a} \cdot \overline{b}$	Законы Де Моргана	$\overline{ab} = \overline{a} \vee \overline{b}$	
$A \lor 0 = a$	Правила операций	$a \cdot 0 = 0$	
$A \lor 1 = 1$	с константами	$a \cdot 1 = a$	
$a \lor ab = a$	Законы поглощения	$a(a \lor b) = a$	
$a \vee (ab) = a \vee b$		$a(a \lor b) = ab$	
$a \lor a = 1$	Законы инверсии (отрицания)	$a \cdot a = 0$	
$ab \vee a\overline{b} = a$	Законы склеивания	$(a \lor b) \cdot (a \lor \overline{b}) = a$	

- $\stackrel{=}{a} = a$ снятие двойного отрицания;
- $a \rightarrow b = a \lor b$ снятие импликации;
- $a \sim b = ab \vee \bar{a} \cdot \bar{b}$ снятие эквиваленции;
- $a \& \&b = ab \lor a \cdot b$ —снятие строгой дизьюнкции.

Рассмотрим несколько примеров на установление истинности сложного высказывания.

1.
$$(\overline{X} \vee Y) \rightarrow \overline{\overline{Y} \rightarrow X}$$

Истинность сложного высказывания можно установить с помощью таблицы истинности (см. табл.).

Введем порядок действий, определяющий последовательность столбцов в таблице истинности для высказывания $(\overline{X} \lor Y) \to \overline{\overline{Y} \to X}$.

1)
$$\overline{X}$$
; 2) $\overline{X} \vee Y$; 3) \overline{Y} ; 4) $\overline{Y} \to X$; 5) $\overline{\overline{Y} \to X}$; 6) $(\overline{X} \vee Y) \to \overline{\overline{Y} \to X}$.

Любые простые и сложные высказывания, полученные из элементарных высказываний с помощью конечного числа введенных логических операций, называются формулами алгебры логики.

Для упрощения формул, содержащих скобки и различные логические операции, будем учитывать ряд правил. Так, при опускании скобок:

- самой первой выполняется конъюнкция между элементарными высказываниями и их отрицаниями;
 - дизъюнкция выполняется раньше импликации и эквиваленции;
- знак отрицания над формулой дает возможность опустить скобки, в которых эта формула заключена.

Таблица

Таблица истинности для двух переменных

X	Y	\overline{X}	$\overline{X} \vee Y$	\overline{Y}	$\overline{Y} \to X$	$\overline{\overline{Y} \to X}$	$(\overline{X} \vee Y) \to \overline{Y} \to X$
0	0	1	1	1	0	1	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	1
1	I	0	1	0	I	0	0

5) Рассмотрите пример.

Упростите выражение:

$$A \vee (A \rightarrow (B \rightarrow A))$$

Решение

$$A \lor (A \to (B \to A)) = A \lor (A \to (\overline{B} \lor A)) = A \lor (\overline{A} \lor (\overline{B} \lor A)) = (A \lor \overline{A}) \lor \overline{B} \lor A = 1 \lor \overline{B} \lor A = 1 \lor A = 1.$$
Other: $A \lor (A \to (B \to A)) = 1$.

II. Практическая работа студентов.

Упростите выражения и сравните таблицы истинности условия и ответа.

- 1. $AB \lor BC \lor AC$:
- 2. $\overline{(\overline{A \lor B})C} \lor \overline{AB \lor BC}$; 3. $\overline{\overline{B \lor C} \lor \overline{A \lor C} \lor AB}$;
- 4. $(\overline{A} \wedge \overline{B}) \vee ((A \rightarrow B) \wedge A);$
- 5. $A \vee \overline{B} \wedge B \wedge (A \rightarrow B)$.

Контрольные вопросы:

- 1. Что называют алгеброй Буля?
- 2. Законы алгебры логики.